Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

K. Ravikumar, ${ }^{\text {a* }}$ B. Sridhar, ${ }^{\text {a }}$ M. Mahesh ${ }^{\text {b }}$ and V. V. Narayana Reddy ${ }^{\text {b }}$

${ }^{\text {a }}$ Laboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ${ }^{\text {b }}$ Organic Chemistry Divi-sion-II, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Correspondence e-mail:
ravikumar_iict@yahoo.co.in

Key indicators

Single-crystal X-ray study $T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.068$
$w R$ factor $=0.145$
Data-to-parameter ratio $=13.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

6-[(Z)-Benzylidene]-2,3-diphenyl-2-azabicyclo[2.2.2]-octan-5-one

The title compound, $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}$, was obtained from the DielsAlder reaction of N -benzylideneaniline and cyclohexen-2-one catalyzed by zirconium tetrachloride. The molecule is the Z isomer. All three six-membered rings in the 2-azabicyclo[2.2.2]octane system adopt the expected boat conformation. In the crystal packing, the phenyl groups are aggregated in hydrophobic layers at $y=0$ and $\frac{1}{2}$.

Comment

Recently, we have published structures of 2-azabicyclo[2.2.2]octane derivatives (Ravikumar et al., 2005a,b). In continuation of this work, we report here the crystal structure of the title compound (I).

(I)

In all essential details, the molecular geometry of (I) (Table 1 and Fig. 1) is in good agreement with that of similar structures (Shi \& Xu, 2001; Shi et al., 2002). The present structure is the Z isomer, as shown by the C5-C6-C21-C22 torsion angle of $175.3(2)^{\circ}$. As observed in the previous structures, the $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 21$ and $\mathrm{C} 6-\mathrm{C} 21-\mathrm{C} 22$ bond angles are distorted, as a consequence of double-bond strain.

As expected, all three six-membered rings of the azabicyclo[2.2.2] system adopt a boat conformation with puckering parameters (Cremer \& Pople, 1975) $q_{2}=0.828(3)^{\circ}, q_{3}=$ $-0.003(2)^{\circ}, Q_{\mathrm{T}}=0.828(3)^{\circ}, \varphi_{2}=-69.3(2)^{\circ}$ and $\theta_{2}=90.2(2)^{\circ}$ for $\mathrm{N} 2 / \mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 8 / \mathrm{C} 7 / \mathrm{C} 1 ; q_{2}=0.836(2)^{\circ}, q_{3}=0.012(2)^{\circ}, Q_{\mathrm{T}}=$ $0.836(2)^{\circ}, \varphi_{2}=171.7(2)^{\circ}$ and $\theta_{2}=89.2(2)^{\circ}$ for $\mathrm{C} 1 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 4 /$ C5/C6; $q_{2}=0.819(3)^{\circ}, q_{3}=0.007(2)^{\circ}, Q_{\mathrm{T}}=0.819(3)^{\circ}, \varphi_{2}=$ 174.6 (2) ${ }^{\circ}$ and $\theta_{2}=89.5(2)^{\circ}$ for $\mathrm{C} 1 / \mathrm{C} 6 / \mathrm{C} 5 / \mathrm{C} 4 / \mathrm{C} 3 / \mathrm{N} 2$.

In the absence of hydrogen-bond donating groups, the crystal packing is stabilized purely by van der Waals forces. The phenyl groups are aggregated in hydrophobic layers at $y=$ 0 and $\frac{1}{2}$ (Fig. 2).

Experimental

To a solution of N-benzylideneaniline (5.5 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ at room temperature were sequentially added $\mathrm{ZrCl}_{4}(10 \mathrm{~mol} \%)$ and

Received 8 November 2005 Accepted 14 November 2005 Online 19 November 2005

Imino Diels-Alder adducts. IX.
cyclohexen-2-one (5.5 mmol), and the mixture was stirred for 6 h . After completion of the reaction as indicated by thin-layer chromatography, it was quenched with water; the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ and washed with water $(10 \mathrm{ml})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{ml})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to yield a darkbrown residue, which was purified by column chromatography using $2-10 \%$ ethyl acetate in hexane as eluant.

Crystal data

$\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}$
$M_{r}=365.45$
Monoclinic, $P 2_{1} / c$
$a=10.1554$ (9) \AA
$b=16.5088$ (15) \AA
$c=11.7903$ (11) \AA
$\beta=97.154$ (2) ${ }^{\circ}$
$V=1961.3(3) \AA^{3}$
$Z=4$
$D_{x}=1.238 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3275
reflections
$\theta=2.4-21.4^{\circ}$ $\mu=0.08 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Block, colorless
$0.21 \times 0.13 \times 0.08 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
ω scans
Absorption correction: none
18504 measured reflections
3437 independent reflections

Refinement

Refinement on F^{2}

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0509 P)^{2}\right.
$$

$$
+0.6492 P]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.18 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.13 \mathrm{e}^{-3}$
$w R\left(F^{2}\right)=0.145$
$S=1.18$
3437 reflections
253 parameters

H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{C} 5-\mathrm{O} 28$	$1.220(3)$	$\mathrm{C} 6-\mathrm{C} 21$	$1.329(3)$
$\mathrm{C} 21-\mathrm{C} 6-\mathrm{C} 1$	$129.5(2)$	$\mathrm{C} 6-\mathrm{C} 21-\mathrm{C} 22$	$129.9(2)$

H atoms were included in calculated positions and refined as riding, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$ and with $U_{\text {iso }}(\mathrm{H})$ $=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990) and MERCURY (Bruno et al., 2002); software used to prepare material for publication: SHELXL97.

The authors thank Dr J. S. Yadav, Director, IICT, Hyderabad, for his kind encouragement.

Figure 1
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
A packing diagram for (I), viewed approximately down the a axis. H atoms have been omitted for clarity.

References

Bruker (2001). SAINT (Version 6.28a) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruno, I., Cole, J. J. C., Edgington, P. R., Kessler, M. K., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.

Cremer, D. \& Pople, J. M. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Ravikumar, K., Sridhar, B., Mahesh, M. \& Narayana Reddy, V. V. (2005a). Acta Cryst. E61, o2277-o2279.
Ravikumar, K., Sridhar, B., Mahesh, M. \& Narayana Reddy, V. V. (2005b). Acta Cryst. E61, o3273-o3275.
Sheldrick, G. M. (1990). SHELXTL/PC. User Manual. Bruker AXS Inc. Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shi, M. \& Xu, Y. M. (2001). Chem. Commun. pp. 1876-1877.
Shi, M., Xu, Y. M., Zhao, G. L. \& Wu, X. F. (2002). Eur. J. Org. Chem. pp. 36663679.

